

ASX ANNOUNCEMENT

9 July 2025

Black Mountain Phase 2 Drilling Program Update

HIGHLIGHTS:

- Chariot Corporation has completed the Phase 2 Drilling Program at Black Mountain in Wyoming, USA, consisting of twenty (20) shallow reverse circulation percussion drill holes and total drilling of 783.6 metres.
- The Phase 2 Drill Program intersected mineralization grading >0.5% Li₂O in five (5) holes of the holes drilled in the Northern Crest portion of the Project area.
- Geological mapping in the Southern Crest area has confirmed pegmatite in outcrops that will be evaluated as part of the next drill program

Chariot Corporation Limited ("**Chariot**" or the "**Company**") is pleased to announce results of the phase 2 drilling program ("**Phase 2 Drilling Program**") conducted at its Black Mountain hard rock lithium project ("**Black Mountain**"; Figure 1; Figure 2).

Chariot commenced the Phase 2 Drilling Program on 25 November 2024 in order to determine if extensions of the lithium mineralised pegmatites observed in outcrops that were intersected in the Phase 1 drilling program were sufficient to support the proposed "pilot mine" project (ASX: announced on 3 October 2024¹). The original Phase 2 Drilling Program was hindered by the onset of winter weather conditions and icy access road conditions (Figure 3).

The original Phase 2 drilling plan contemplated up to 43 drill holes (and up to 4,300 meters of drilling) to test the **Northern Crest**, **Northwest Flank** and **Southern Crest** pegmatites and to determine the depth extension of the lithium mineralisation observed at surface (Figure 1). Due to the winter weather conditions, the Wyoming Bureau of Land Management ("**Wyoming BLM**") required a more limited program and, accordingly, the drilling plan was modified with a more targeted program of 18 holes (comprising 16 in the **Northern Crest** and **Northwest Flank** and 2 in the **Southern Crest** areas).

The modified plan focused on the **Northern Crest** and **Northwest Flank** areas as they provided easier access and safer operating conditions (Figure 2 and Figure 4). The initial plan included drilling holes inclined to 60 degrees from horizontal and towards an azimuth of 145 degrees (i.e. to the southeast), based on interpretations of the pegmatite orientations from surface outcrops and the

Level 5,191 St Georges Terrace Perth WA 6000 chariotcorporation.com ABN 13 637 559 847

¹ https://www.chariotcorporation.com/pdf/9b0e897a-3ae5-4b59-8fc3-7b8960088108/Black-Mountain-Strategy-Drilling-Plans.pdf

Phase 1 drilling results. The plan provisioned the drilling of a vertical hole from the same location if pegmatite was intersected in the first 10 meters of the planned inclined hole. This approach enabled further delineation of potential extensions of the pegmatites using the same drill pad.

Unfortunately, the two holes planned for the **Southern Crest**, considered to be the more prospective area for lithium mineralisation, could not be drilled because of icy conditions on steep access roads. This area will form part of the 2025 planned exploration .

The completed Phase 2 Drilling Program collar locations are shown in Figure 2 and provided in Table 2.

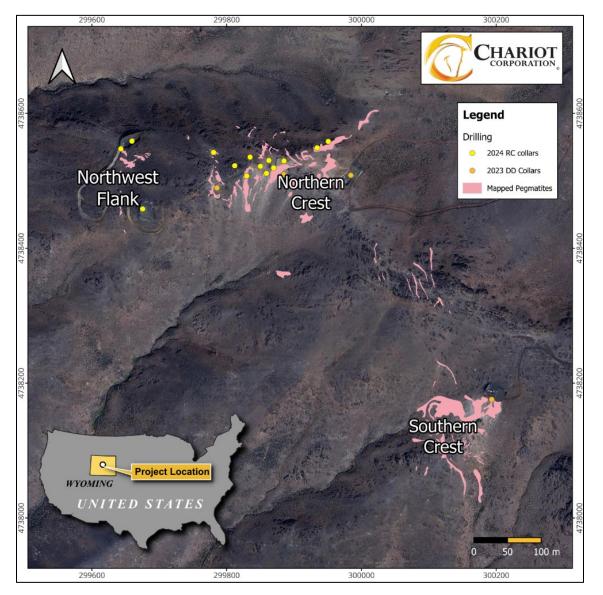


Figure 1: Map showing the location of the Black Mountain project area, Wyoming, USA with mapped pegmatites and drill hole collar locations.

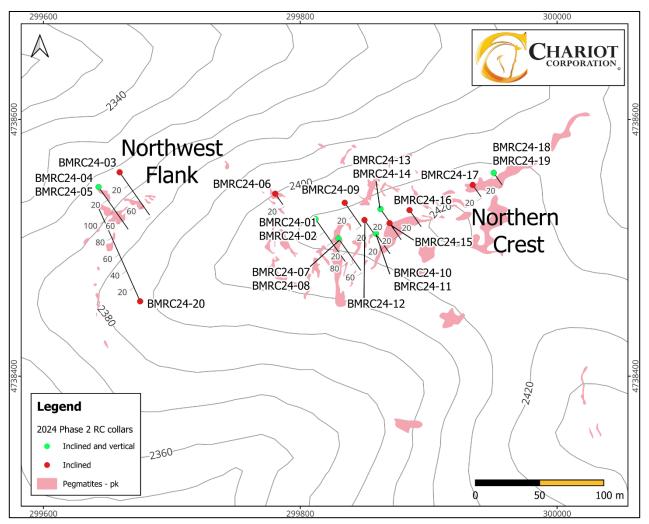


Figure 2: Map showing collar locations for the Phase 2 Drilling Program; red symbols – inclined drill hole, green symbols = inclined and vertical drill holes drilled from the same site.

Figure 3: Boart Longyear MPD 1500 RC Drill Rig and support vehicles on site at Black Mountain.

Pegmatites were intersected in seventeen (17) of the drilled reverse circulation percussion holes in the **Northern Crest** and **Northwest Flank** areas (Figure 5). The significant intersections (those >0.5% Li₂O) were shallow (from surface to ~42 m along hole) and lithium grades were lower than expected, with the best intercepts between 0.58% to 0.99% Li₂O over lengths ranging from 0.6 m to 1.8 m (Table 1; Appendix 1). Less well lithium mineralised pegmatites were intersected at depths of up to 101 m down hole. The mineralised intercepts are thin intervals within thicker pegmatites indicating the zoned nature of the Black Mountain LCT pegmatites (Figure 6). The data from the Phase 2 Drilling Program suggests that the pegmatite vein system is more complex than the preliminary interpretations suggested, with multiple veins systems, and indicate an overall shallow dip to the southwest (and not to the northwest as initially thought) in the **Northern Crest** area. This indicates that the potential extensions of the mineralised pegmatites are to the south of the areas already drilled (Figure 4). There is also a 150 m gap between the pegmatite outcrops in the **Northern Crest** and **Northwest Flank** areas that has not been drill tested (Figure 7 and Figure 2).

Hole ID	From (m)	To (m)	Interval (m)	Li ₂ O (%)	Ta₂O₅ (ppm)
BMRC24-01	8.5	9.1	0.6	0.84	74
BMRC24-01	43.6	44.8	1.2	0.72	102
BMRC24-07	2.7	3.4	0.6	0.58	68
BMRC24-07	7.0	7.6	0.6	0.99	101
BMRC24-08	6.7	7.6	0.9	0.62	113
BMRC24-11	1.5	2.4	0.9	0.63	65
BMRC24-19	6.1	7.9	1.8	0.70	74

Table 1: RC Drilling Significant intercepts (Li₂O > 0.5%)

Note: Based on the intersection angle of the drilling with the revised pegmatite orientation, downhole widths noted above are oblique and thus represent apparent widths. Apparent width is greater than true intercept width. Currently not enough information is available to determine the relationship of true widths to the apparent widths.

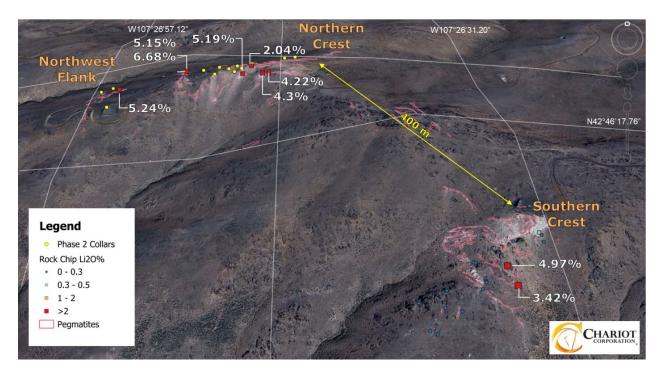


Figure 4: Google Earth view of the Black Mountain project showing pegmatites (pink outlines), previously released significant rock chip results (red) (refer ASX announcement 25th October 2023 rock chip results²) and Phase 2 collar locations (yellow).

² Chariot Prospectus - https://www.chariotcorporation.com/pdf/00ded41f-d886-4c31-a566-5c8c07490b07/Prospectus-part-1.pdf

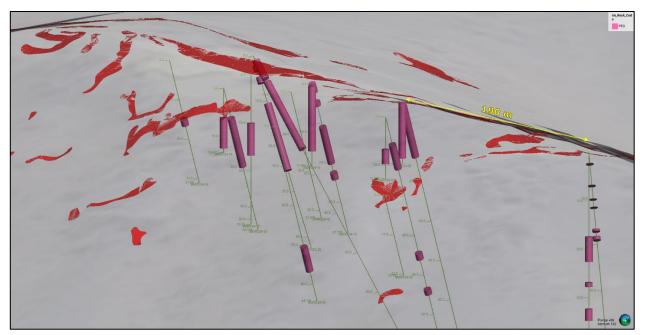


Figure 5: Black Mountain Leapfrog model of the Northern Crest showing the mapped pegmatites (red) draped onto the digital elevation model (DEM), and downhole pegmatite intersections (purple). Oblique view looking southeast.

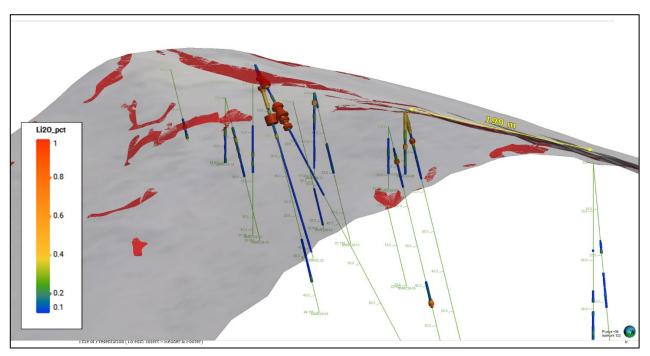



Figure 6: Black Mountain Leapfrog view of the Northern Crest showing the mapped pegmatites and downhole lithium grades for sampled pegmatite draped onto the DEM in the Northern Crest. Oblique view looking southeast (same as Figure 5).

Figure 7: Google Earth View looking north of the area between the Northern Crest and Northwest Flank that remains untested by drilling. Also shown are the Phase 2 collar positions and previously released rock chip results (refer ASX announcement 25th October 2023 – see footnote).

In addition to the drilling program, verification mapping in December 2024 by ERM lithium and pegmatite expert, Michael Cronwright confirmed the extent in pegmatite outcrops of the **Southern Crest** area and the Northwest Flank where Chariot's geologists have previously visually identified and sampled spodumene-bearing pegmatite outcrops in 2023 at Black Mountain, results ranged from 2.04% to 6.68% Li₂O (refer ASX: announcement 25 October 2023³). This work further supports Chariot Corporation's plans to drill the planned Phase 2 holes in this area.

Planning to further evaluate the lithium mineralisation in the Southern Crest area is underway with additional drilling to be undertaken as practicable. The secondary priority is completing the drill testing of the Northern Crest and Northwest Flank and the gap areas in view of the new understanding of the pegmatite orientations.

Base Metal Mineralisation

Drillhole BMRC24-03, (Figure 3) encountered an interval of base metal mineralisation from 47.8 to 72.2 m. Assay results confirm the presence of low-level base metal mineralisation in the Black Mountain project area, with an average of 0.57% Zn (zinc) over an apparent width of 24.8 m. The top

³ Chariot Prospectus - https://www.chariotcorporation.com/pdf/00ded41f-d886-4c31-a566-5c8c07490b07/Prospectus-part-1.pdf

1.52 m of the sulphide-bearing intersection had the highest grade with 1.3% Zn. Of the other base metals, only copper was elevated at up to 0.15% Cu. The adjacent hole, BMRC24-04 drilled 20 m to the southwest, failed to intersect the same sulphide interval.

Base metal mineralisation was previously identified in hole BMDDH023_1 (see announcement 2 February 2023)⁴, approximately 200m southeast of BMRC24-03.

Chariot Corporation will not be focusing any further drill holes targeting the base metal occurrences at this stage.

Hole ID	UTM NA	ate system ND83 Zone 3N	RL (m)	End of hole	Dip (°)	Azimuth (°)
	Easting (m)	Northing (m)		(m)		()
BMRC24-01	299812	4738522	2412	80	60	145
BMRC24-02	299812	4738522	2412	13	90	0
BMRC24-03*	299659	4738559	2363	81	60	145
BMRC24-04	299643	4738547	2363	80	60	145
BMRC24-05	299643	4738547	2363	11	90	0
BMRC24-06*	299781	4738542	2399	20	60	145
BMRC24-07	299830	4738507	2412	60	60	145
BMRC24-08	299830	4738507	2412	13	90	0
BMRC24-09	299835	4738535	2408	44	60	145
BMRC24-10	299859	4738511	2414	38	60	145
BMRC24-11	299859	4738511	2414	17	90	0
BMRC24-12	299850	4738522	2413	31	60	145
BMRC24-13	299863	4738530	2414	36	60	145
BMRC24-14	299863	4738530	2414	13	90	0
BMRC24-15	299870	4738519	2415	31	90	0
BMRC24-16	299885	4738529	2417	31	60	145
BMRC24-17	299934	4738549	2416	22	60	145
BMRC24-18	299951	4738558	2413	22	60	145
BMRC24-19	299951	4738558	2413	25	90	0
BMRC24-20	299675	4738458	2387	116	45	336

Table 2: Phase 2 RCP drill hole collar locations.

Note: Positions measured by handheld GPS, accuracy +/- 3 m, RL obtained from drone DTM model.

* - BMRC24-06 did not intersect any pegmatites and no samples collected for assay.

⁴ https://www.chariotcorporation.com/pdf/ee809cb3-ffde-46b1-8c18-66f0d573ae93/Black-Mountain-Drilling-Results.pdf

Authorized on behalf of the Board of Directors.

Shanthar Pathmanathan Managing Director Chariot Corporation Ltd

Competent Persons Statement

The technical information in the document that relates to the Exploration Results is based on information compiled and conclusions derived by Mr. Michael Cronwright, who is a geologist with 25 years' experience in exploration, is a fellow of The Geological Society of South Africa (GSSA) and Pr. Sci. Nat. (Geological Sciences) registered with the South African Council for Natural Professions (SACNASP). Mr. Cronwright is a Principal Geologist with ERM Ltd (UK) (an independent consulting company and previously CSA Global). Mr. Cronwright has sufficient experience relevant to the style of mineralisation and type of deposit under consideration and to the activity he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the Joint Ore Reserves Committee (JORC) Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr. Cronwright consents to the inclusion in this report of matters based on his information in the form and context in which they appear.

Important Notice

Statements in this announcement are made only as of the date of this announcement unless otherwise stated and the information in this announcement remains subject to change without notice.

To the maximum extent permitted by law, neither Chariot nor any of its affiliates, related bodies corporate, their respective officers, directors, employees, advisors and agents or any other person accepts any liability as to or in relation to the accuracy or completeness of the information, statements, opinions or matters (express or implied) arising out of, contained in or derived from this announcement or any omission from this announcement or of any other written or oral information or opinions provided now or in the future to any person.

This announcement may contain some references to forecasts, estimates, assumptions and other forward-looking statements. Although the Company believes that its expectations, estimates and projected outcomes are based on reasonable assumptions, it can give no assurance that they will be achieved.

The information in this announcement that relates to prior exploration results is based on, and fairly represents, information and supporting documentation previously announced to ASX on 25 October 2023⁵. The Company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcement.

⁵ Chariot Prospectus - <u>https://www.chariotcorporation.com/pdf/00ded41f-d886-4c31-a566-5c8c07490b07/Prospectus-part-1.pdf</u>

About Chariot

Chariot Corporation Limited is a mineral exploration company focused on discovering and developing high-grade and near surface lithium opportunities in the United States. Chariot has twelve (12) lithium projects, including two core projects (the "**Core Projects**") and a number of exploration pipeline projects which Chariot majority owns and operates.

The Core Projects include Chariot's flagship Black Mountain Project (which is prospective for hard rock lithium) in Wyoming, USA and the Resurgent Project (which is prospective for claystone lithium) in Nevada and Oregon, USA. Initial survey results from the Core Projects indicate high-grade lithium mineralisation at surface.

Chariot holds an interest in six exploration pipeline projects located in Wyoming, USA, including, the Copper Mountain Project, the South Pass Project and four other hard rock lithium projects.

Chariot holds an interest in the Lida and Amargosa projects in Nevada, USA which are prospective for claystone hosted lithium.

Chariot holds an interest in a hard rock lithium project in Zimbabwe which is prospective for spodumene bearing pegmatites and an early-stage hard rock lithium exploration project in Western Australia.

Appendix 1 – Drill Assay Data

Hole_ID	From (m)	To (m)	Interval (m)	Li2O (%)	Cs (ppm)	Rb (ppm)	Ta (ppm)	Cu (ppm)	Fe (ppm)	Pb (ppm)	Zn (ppm)
BMRC24-01	5.5	7.0	1.5	0.04	29	94	0.6	108	80068		121
BMRC24-01	7.0	8.5	1.5	0.24	530	724	31.1	73	56024		141
BMRC24-01	8.5	9.1	0.6	0.84	492	1693	60.8	118	19070		95
BMRC24-01	9.1	10.1	0.9	0.09	766	4010	56.0	26	10353		128
BMRC24-01	10.1	11.0	0.9	0.07	785	1952	31.7	49	23603		171
BMRC24-01	11.0	13.1	2.1	0.1	112	200	7.2	133	76578		172
BMRC24-01	13.1	15.2	2.1	0.05	50	90	0.7	107	78114		122
BMRC24-01	39.0	40.5	1.5	0.13	90	128	0.7	108	74593		100
BMRC24-01	40.5	42.1	1.5	0.15	250	296	3.9	117	71019		87
BMRC24-01	42.1	43.6	1.5	0.15	198	374	10.5	91	65098		82
BMRC24-01	43.6	44.2	0.6	0.56	3373	3288	74.6	31	12190		81
BMRC24-01	44.2	44.8	0.6	0.88	959	2347	92.3	122	25048		137
BMRC24-01	44.8	45.4	0.6	0.23	191	220	2.2	236	107880		157
BMRC24-02	2.4	3.0	0.6	0.04	50	183	1.0	82	40891		79
BMRC24-02	3.0	4.6	1.5	0.05	53	126	0.8	215	85025		201
BMRC24-02	4.6	6.1	1.5	0.17	54	96	0.5	96	81949		127
BMRC24-02	6.1	6.7	0.6	0.1	174	428	20.3	97	66166		135
BMRC24-02	6.7	7.3	0.6	0.03	268	1086	117.3	40	14898		128
BMRC24-02	7.3	7.9	0.6	0.03	351	1664	62.6	39	15886		142
BMRC24-02	7.9	8.5	0.6	0.07	409	873	49.8	55	30726		181
BMRC24-02	8.5	9.8	1.3	0.12	287	483	5.8	134	79840		215
BMRC24-03	47.9	49.4	1.5	0.03	25.5	27.4	0.4	659.8	>250000	20	13008
BMRC24-03	49.4	50.9	1.5	0.02	31.4	26.5	0.7	803.1	242306	21	7956
BMRC24-03	50.9	52.4	1.5	0.02	44.2	42.6	0.4	1039	>250000	25	5496
BMRC24-03	52.4	53.9	1.5	0.02	15.6	32.2	0.6	1512.6	>250000	15	5588
BMRC24-03	53.9	55.5	1.5	0.02	16.9	37.9	0.7	1043.3	>250000	39	4945
BMRC24-03	55.5	57.0	1.5	0.02	14.1	34.3	0.5	602.9	193772	19	3224
BMRC24-03	57.0	58.5	1.5	0.02	7	28.3	0.4	897.4	189953	13	4612
BMRC24-03	58.5	60.0	1.5	0.02	21	26.3	0.4	537.1	>250000	26	7823
BMRC24-03	60.0	61.6	1.5	0.02	21.8	49.1	0.6	658.5	>250000	16	4426
BMRC24-03	61.6	63.1	1.5	0.03	23.3	40.3	0.6	519.8	>250000	51	5295
BMRC24-03	63.1	64.6	1.5	0.03	12.9	42.9	0.7	674.7	197851	220	4617
BMRC24-03	64.6	66.1	1.5	0.02	11.1	60.5	0.5	856	190744	65	4553
BMRC24-03	66.1	67.7	1.5	0.03	18.2	122.3	0.7	787.1	232295	112	6996
BMRC24-03	67.7	69.2	1.5	0.03	16.5	92.8	0.7	778	240853	115	6134
BMRC24-03	69.2	70.7	1.5	0.03	28.1	229.2	12.7	645.8	219602	77	4616
BMRC24-03	70.7	72.2	1.5	0.04	22.8	163.6	3.9	322.7	156945	111	2401
BMRC24-03	72.2	73.2	0.9	0.02	12	64.3	0.7	95	122127	26	389

Level 5, 191 St Georges Terrace Perth WA 6000

Hole_ID	From (m)	To (m)	Interval (m)	Li2O (%)	Cs (ppm)	Rb (ppm)	Ta (ppm)	Cu (ppm)	Fe (ppm)	Pb (ppm)	Zn (ppm)
BMRC24-04	1.5	2.4	0.9	0.07	109	801	33.1	107	82250		719
BMRC24-04	2.4	3.0	0.6	0.02	672	4550	42.0	23	24370		505
BMRC24-04	3.0	3.7	0.6	0.02	324	2082	83.4	49	27503		492
BMRC24-04	3.7	4.3	0.6	0.01	206	1267	100.2	22	18201		336
BMRC24-04	4.3	4.9	0.6	0.02	62	351	108.2	52	34986		1148
BMRC24-04	4.9	5.8	0.9	0.02	72	315	135.1	55	45527		729
BMRC24-04	5.8	7.3	1.5	0.05	74	320	33.3	166	80799		7846
BMRC24-05	3.0	4.0	0.9	0.05	34	211	5.7	75	99398		4416
BMRC24-05	4.0	4.6	0.6	0.05	39	256	17.4	119	94391		4697
BMRC24-05	4.6	5.8	1.2	0.06	95	640	111.0	83	106633		6549
BMRC24-05	5.8	6.1	0.3	0.08	45	133	47.5	47	129253		11663
BMRC24-07	0.0	0.9	0.9	0.17	694	554	24.8	101	32566		354
BMRC24-07	0.9	1.5	0.6	0.36	1202	701	16.9	42	18957		135
BMRC24-07	1.5	2.1	0.6	0.38	193	340	31.4	20	14446		89
BMRC24-07	2.1	2.7	0.6	0.49	1384	1012	39.2	126	14822		134
BMRC24-07	2.7	3.4	0.6	0.58	2144	2026	56.0	17	18498		154
BMRC24-07	3.4	4.0	0.6	0.34	1036	3809	63.1	7	8467		105
BMRC24-07	4.0	4.6	0.6	0.47	2897	5915	66.1	13	6735		95
BMRC24-07	4.6	5.2	0.6	0.37	2362	5697	61.4	49	6188		119
BMRC24-07	5.2	5.8	0.6	0.15	1514	6982	40.5	37	4029		36
BMRC24-07	5.8	6.4	0.6	0.09	959	4414	32.0	8	4464		35
BMRC24-07	6.4	7.0	0.6	0.32	1077	5065	61.9	181	3993		37
BMRC24-07	7.0	7.6	0.6	0.99	1435	4570	82.4	187	5393		36
BMRC24-07	7.6	8.2	0.6	0.35	2115	2622	60.8	9	5238		26
BMRC24-07	8.2	8.8	0.6	0.23	1503	5790	107.3	12	3765		47
BMRC24-07	8.8	9.4	0.6	0.18	2474	4102	62.6	37	5372		99
BMRC24-07	9.4	10.1	0.6	0.04	6412	4194	86.5	14	4307		36
BMRC24-07	10.1	11.3	1.2	0.05	1460	1870	55.7	38	9650		93
BMRC24-07	11.3	11.9	0.6	0.18	463	781	11.7	79	67012		172
BMRC24-07	11.9	12.8	0.9	0.1	649	793	15.0	57	62531		91
BMRC24-07	12.8	13.7	0.9	0.1	241	466	6.2	56	62460		84
BMRC24-07	13.7	15.2	1.5	0.08	98	199	2.7	313	66411		153
BMRC24-07	15.2	16.8	1.5	0.08	89	147	4.0	88	75074		107
BMRC24-08	0.0	0.9	0.9	0.39	977	617	50.8	46	11044		119
BMRC24-08	0.9	1.8	0.9	0.39	1046	3266	38.2	49	7284		206
BMRC24-08	1.8	2.7	0.9	0.34	1185	4300	23.6	8	5361		43
BMRC24-08	2.7	3.7	0.9	0.4	1023	3994	53.9	<lod< td=""><td>5318</td><td></td><td>51</td></lod<>	5318		51
BMRC24-08	3.7	4.6	0.9	0.28	560	2729	54.5	12	5569		80
BMRC24-08	4.6	5.5	0.9	0.3	>10000	4105	65.2	8	3689		52

Hole_ID	From (m)	To (m)	Interval (m)	Li2O (%)	Cs (ppm)	Rb (ppm)	Ta (ppm)	Cu (ppm)	Fe (ppm)	Pb (ppm)	Zn (ppm)
BMRC24-08	5.5	6.7	1.2	0.18	1559	4372	78.0	110	3742		79
BMRC24-08	6.7	7.6	0.9	0.62	1067	3565	92.8	10	4884		58
BMRC24-08	7.6	8.5	0.9	0.17	1060	5153	65.5	38	4346		49
BMRC24-08	8.5	9.7	1.2	0.18	991	4103	108.6	<lod< td=""><td>4185</td><td></td><td>63</td></lod<>	4185		63
BMRC24-08	9.7	10.4	0.7	0.19	826	3332	72.8	13	7803		76
BMRC24-08	10.4	11.0	0.6	0.25	262	732	15.0	80	62907		171
BMRC24-08	11.0	11.6	0.6	0.15	186	698	14.6	98	63717		134
BMRC24-08	11.6	12.8	1.2	0.1	89	242	4.1	116	71828		120
BMRC24-09	25.9	27.4	1.5	0.1	138	189	0.6	133	107542		231
BMRC24-09	27.4	29.0	1.5	0.1	226	300	0.9	63	64642		259
BMRC24-09	29.0	30.5	1.5	0.1	384	525	13.6	44	37663		145
BMRC24-09	30.5	32.0	1.5	0.04	277	491	118.8	24	13684		103
BMRC24-09	32.0	33.5	1.5	0.08	516	738	48.4	32	43554		157
BMRC24-09	33.5	35.1	1.5	0.1	766	827	32.4	46	71118		191
BMRC24-09	35.1	36.6	1.5	0.19	972	1226	3.4	85	96780		169
BMRC24-10	0.0	0.9	0.9	0.22	303	461	66.0	54	22583		153
BMRC24-10	0.9	1.8	0.9	0.11	65	191	104.0	6	10909		71
BMRC24-10	1.8	2.1	0.3	0.18	2386	1624	114.6	49	40839		271
BMRC24-10	2.1	3.7	1.5	0.14	781	607	41.5	73	65957		162
BMRC24-10	12.8	14.0	1.2	0.17	151	178	3.5	69	77505		130
BMRC24-10	14.0	15.2	1.2	0.08	276	620	31.8	16	16793		64
BMRC24-10	15.2	16.2	0.9	0.13	274	672	41.9	11	15240		67
BMRC24-10	16.2	17.1	0.9	0.09	89	160	48.6	20	6815		67
BMRC24-10	17.1	18.0	0.9	0.12	1182	678	54.4	947	36382		323
BMRC24-10	18.0	19.2	1.2	0.16	672	595	24.2	66	41123		206
BMRC24-10	19.2	20.1	0.9	0.09	377	378	28.0	66	44881		195
BMRC24-11	0.0	0.6	0.6	0.18	1776	996	30.9	74	59958		178
BMRC24-11	0.6	1.5	0.9	0.16	1070	602	32.2	69	55764		127
BMRC24-11	1.5	2.4	0.9	0.63	850	1536	53.3	48	25465		97
BMRC24-11	2.4	3.4	0.9	0.19	1750	1186	54.5	66	39172		274
BMRC24-11	3.4	4.3	0.9	0.1	1135	1398	55.7	63	28795		342
BMRC24-11	4.3	5.2	0.9	0.2	2417	1282	29.4	1084	64497		2216
BMRC24-11	5.2	6.1	0.9	0.18	908	534	11.6	460	64619		949
BMRC24-11	6.1	7.6	1.5	0.08	466	428	23.3	923	169951		1683
BMRC24-11	7.6	9.1	1.5	0.02	139	175	16.1	372	142080		1002
BMRC24-11	9.1	11.0	1.8	0.02	107	156	4.8	204	110316		547
BMRC24-11	11.0	12.5	1.5	0.05	764	704	49.9	199	96330		608
BMRC24-11	12.5	14.0	1.5	0.02	232	89	6.6	288	124900		1455
BMRC24-11	14.0	15.5	1.5	0.01	55	53	2.6	173	93539		369

Hole_ID	From (m)	To (m)	Interval (m)	Li2O (%)	Cs (ppm)	Rb (ppm)	Ta (ppm)	Cu (ppm)	Fe (ppm)	Pb (ppm)	Zn (ppm)
BMRC24-12	21.9	23.5	1.5	0.01	51	68	0.2	610	106726		2410
BMRC24-12	23.5	25.0	1.5	0.01	26	65	0.4	326	84139		599
BMRC24-12	25.0	26.5	1.5	0.01	12	30	0.2	122	58942		375
BMRC24-12	26.5	28.0	1.5	0.01	11	28	0.6	233	84167		2058
BMRC24-12	28.0	29.6	1.5	0.01	12	62	0.1	235	80076		885
BMRC24-12	29.6	31.1	1.5	0.02	14	31	0.2	770	103075		2211
BMRC24-13	7.6	9.1	1.5	0.19	571	485	11.9	109	81023		231
BMRC24-13	9.1	10.1	0.9	0.06	733	4160	35.2	10	14400		66
BMRC24-13	10.1	11.0	0.9	0.35	838	4651	100.1	13	9457		73
BMRC24-13	11.0	11.9	0.9	0.18	918	5393	29.6	7	7065		53
BMRC24-13	11.9	12.8	0.9	0.13	646	3827	55.9	<lod< td=""><td>6619</td><td></td><td>69</td></lod<>	6619		69
BMRC24-13	12.8	13.4	0.6	0.23	750	4195	61.0	<lod< td=""><td>6558</td><td></td><td>74</td></lod<>	6558		74
BMRC24-13	13.4	14.3	0.9	0.03	527	3191	51.4	<lod< td=""><td>6165</td><td></td><td>64</td></lod<>	6165		64
BMRC24-13	14.3	15.2	0.9	0.17	386	1925	25.3	<lod< td=""><td>6201</td><td></td><td>56</td></lod<>	6201		56
BMRC24-13	15.2	16.2	0.9	0.03	400	1924	17.7	<lod< td=""><td>5439</td><td></td><td>45</td></lod<>	5439		45
BMRC24-13	16.2	17.1	0.9	0.04	601	3296	37.8	<lod< td=""><td>7212</td><td></td><td>61</td></lod<>	7212		61
BMRC24-13	17.1	18.0	0.9	0.11	1032	1418	12.1	92	50353		191
BMRC24-13	18.0	18.9	0.9	0.11	230	299	4.2	73	99800		141
BMRC24-13	18.9	19.8	0.9	0.08	118	220	1.4	79	108187		131
BMRC24-14	6.1	7.0	0.9	0.23	1045	874	17.6	159	96648		217
BMRC24-14	7.0	7.9	0.9	0.21	468	1294	58.8	17	24880		89
BMRC24-14	7.9	8.8	0.9	0.12	720	4159	40.0	27	13235		45
BMRC24-14	8.8	9.8	0.9	0.04	762	4469	35.3	<lod< td=""><td>4779</td><td></td><td>32</td></lod<>	4779		32
BMRC24-14	9.8	10.7	0.9	0.09	831	4601	47.1	7	5720		50
BMRC24-14	10.7	11.6	0.9	0.04	488	2270	32.5	<lod< td=""><td>5259</td><td></td><td>61</td></lod<>	5259		61
BMRC24-14	11.6	12.5	0.9	0.14	479	1188	23.8	46	51924		127
BMRC24-14	12.5	13.4	0.9	0.15	187	575	6.9	91	95637		143
BMRC24-15	8.5	10.1	1.5	0.08	736	669	15.7	393	102120		571
BMRC24-15	10.1	11.0	0.9	0.03	209	602	26.8	392	40857		216
BMRC24-15	11.0	11.9	0.9	0.07	781	618	34.1	231	69758		442
BMRC24-15	11.9	13.1	1.2	0.09	727	591	26.8	222	63263		605
BMRC24-15	13.1	14.0	0.9	0.08	623	2765	104.1	38	22900		189
BMRC24-15	14.0	14.9	0.9	0.25	646	2935	151.8	35	14076		172
BMRC24-15	14.9	15.8	0.9	0.09	702	1860	37.4	37	13624		146
BMRC24-15	15.8	16.8	0.9	0.22	1288	1424	12.2	158	47333		412
BMRC24-15	16.8	18.3	1.5	0.11	232	252	3.4	73	71289		149
BMRC24-16	12.5	14.0	1.5	0.12	845	622	8.9	67	91908		159
BMRC24-16	14.0	14.9	0.9	0.44	251	624	71.3	<lod< td=""><td>28416</td><td></td><td>127</td></lod<>	28416		127
BMRC24-16	14.9	15.5	0.6	0.09	395	1173	55.9	<lod< td=""><td>25406</td><td></td><td>92</td></lod<>	25406		92

Hole_ID	From (m)	To (m)	Interval (m)	Li2O (%)	Cs (ppm)	Rb (ppm)	Ta (ppm)	Cu (ppm)	Fe (ppm)	Pb (ppm)	Zn (ppm)
BMRC24-16	15.5	16.5	0.9	0.11	1448	1731	34.9	11	37648		102
BMRC24-16	16.5	17.4	0.9	0.25	685	610	17.8	49	84416		124
BMRC24-17	0.0	0.9	0.9	0.05	205	871	11.5	43	69434		175
BMRC24-17	0.9	1.8	0.9	0.04	219	1940	68.8	<lod< td=""><td>12360</td><td></td><td>66</td></lod<>	12360		66
BMRC24-17	1.8	2.7	0.9	0.01	228	2641	52.8	<lod< td=""><td>8245</td><td></td><td>55</td></lod<>	8245		55
BMRC24-17	2.7	3.7	0.9	0.03	227	2386	35.9	7	17764		49
BMRC24-17	3.7	4.6	0.9	0.01	237	2809	35.2	<lod< td=""><td>7247</td><td></td><td>38</td></lod<>	7247		38
BMRC24-17	4.6	5.5	0.9	0.04	177	747	16.7	93	79668		252
BMRC24-17	14.6	15.8	1.2	0.06	72	249	10.4	64	99114		137
BMRC24-17	15.8	16.5	0.6	0.05	73	292	17.7	64	84549		113
BMRC24-17	16.5	18.0	1.5	0.05	63	267	8.3	75	94692		129
BMRC24-17	18.0	19.5	1.5	0.05	73	201	8.1	74	96366		136
BMRC24-18	0.0	0.9	0.9	0	357	4216	12.8	<lod< td=""><td>3303</td><td></td><td>26</td></lod<>	3303		26
BMRC24-18	0.9	1.8	0.9	0	295	3044	17.6	<lod< td=""><td>3302</td><td></td><td>33</td></lod<>	3302		33
BMRC24-18	1.8	2.7	0.9	0.07	696	553	21.9	10	7985		298
BMRC24-18	2.7	3.7	0.9	0.06	337	3410	22.5	<lod< td=""><td>4384</td><td></td><td>58</td></lod<>	4384		58
BMRC24-18	3.7	4.6	0.9	0.01	378	3975	25.9	<lod< td=""><td>3791</td><td></td><td>34</td></lod<>	3791		34
BMRC24-18	4.6	5.5	0.9	0.04	178	944	23.6	40	59134		428
BMRC24-18	5.5	6.4	0.9	0.06	215	477	20.9	71	74314		278
BMRC24-18	6.4	7.9	1.5	0.02	38	140	1.9	46	103154		135
BMRC24-18	17.4	18.9	1.5	0.07	92	276	11.9	48	91557		128
BMRC24-19	6.1	7.0	0.9	0.83	104	271	20.9	51	79661		164
BMRC24-19	7.0	7.9	0.9	0.57	230	815	100.2	<lod< td=""><td>23059</td><td></td><td>99</td></lod<>	23059		99
BMRC24-19	7.9	8.8	0.9	0.22	463	3461	37.4	<lod< td=""><td>11163</td><td></td><td>59</td></lod<>	11163		59
BMRC24-19	8.8	9.8	0.9	0.05	573	4281	36.7	<lod< td=""><td>9447</td><td></td><td>40</td></lod<>	9447		40
BMRC24-19	9.8	10.7	0.9	0.03	506	4154	34.5	<lod< td=""><td>6600</td><td></td><td>54</td></lod<>	6600		54
BMRC24-19	10.7	11.6	0.9	0.03	502	4498	57.8	<lod< td=""><td>8588</td><td></td><td>61</td></lod<>	8588		61
BMRC24-19	11.6	12.5	0.9	0.04	381	3301	35.5	<lod< td=""><td>10655</td><td></td><td>95</td></lod<>	10655		95
BMRC24-19	12.5	13.4	0.9	0.03	378	3387	41.7	10	12160		101
BMRC24-19	13.4	14.3	0.9	0.03	414	1379	43.8	159	40050		537
BMRC24-19	14.3	15.2	0.9	0.05	291	567	16.2	564	84748		519
BMRC24-19	15.2	16.8	1.5	0.06	626	590	83.5	225	81838		481
BMRC24-19	16.8	18.3	1.5	0.09	179	260	13.3	53	108988		218
BMRC24-20	22.9	23.5	0.6	0.01	15	83	0.8	81	88383		87
BMRC24-20	23.5	24.4	0.9	0.02	63	479	6.9	56	72645		93
BMRC24-20	24.4	25.3	0.9	0.01	165	1392	11.1	32	57360		69
BMRC24-20	25.3	26.2	0.9	0.01	334	2983	19.6	<lod< td=""><td>12309</td><td></td><td>31</td></lod<>	12309		31
BMRC24-20	26.2	27.1	0.9	0.01	245	2206	9.4	<lod< td=""><td>18960</td><td></td><td>36</td></lod<>	18960		36
BMRC24-20	27.1	29.0	1.8	0.03	33	238	1.3	63	89999		104

Hole_ID	From (m)	To (m)	Interval (m)	Li2O (%)	Cs (ppm)	Rb (ppm)	Ta (ppm)	Cu (ppm)	Fe (ppm)	Pb (ppm)	Zn (ppm)
BMRC24-20	99.1	100.0	0.9	0.04	79	201	34.9	52	50782		70
BMRC24-20	100.0	100.9	0.9	0.05	68	134	24.0	52	58252		77
BMRC24-20	100.9	102.4	1.5	0.07	98	313	9.8	60	75134		89
BMRC24-20	102.4	103.6	1.2	0.1	536	859	17.9	55	57028		165
BMRC24-20	103.6	105.2	1.5	0.07	110	252	1.4	85	78268		120

JORC Code, 2012 Edition – Table 1 report template

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Reverse circulation (RC) drilling was used to obtain 3 ft (0.9 m) samples which were split using a riffle splitter, to A and B splits of approx. 4 kg each in calico bags. One (1) bag was sent for assay and the other retained for reference or used as duplicate. Pegmatites were analysed using a 53-element peroxide fusion digest with ICP-OES/MS finish and the sulphide interval using a 52-element 4 acid digest with ICP OES/MS finish. All samples were assayed at American Assay Laboratories, Spark, NV. Drill chips were logged by a consultant geologist and intervals identified as pegmatite were sampled. The host rock samples were composited to 5 ft (1.5 m) samples. The pegmatite samples and intervals logged with quartz veining and sulphides were inserted every 30 samples. The B split was used as the duplicate, with 1 for every batch of 30 samples. Representative RC drill chips were collected and placed in plastic chip trays which are stored at the storage facility in Riverton, WY.
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 The 2024 drill campaign completed on 13 December 2024 used RC methods. Holes were oriented between 60° and 90° to intersect the pegmatite and confirm orientation of the pegmatites. RC drilling was completed using a Boart Longyear MPD 1500 RC Drill Rig using 5" bit.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential 	 The RC drilled material was captured in a 6" flexible hose attached to the cyclone. The material was then released into a riffle splitter to produce A and B samples The A and B sample bags were retained. The riffle splitter was cleaned after every sample. Duplicate sample pairs indicate there is no known bias or relationship between sample recovery and grade.

Criteria	JORC Code explanation	Commentary
	loss/gain of fine/coarse material.	
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 Geological logging was undertaken onsite at the time of RC drilling. Data recorded included: Collar information including hole depth, coordinates, hole status, date commenced drilling, date completed drilling. Nature and extent of lithologies. Sample information. RC chips were collected from each sample and retained in chip trays and stored at Chariot's storage facility in Riverton, WY. Chip trays were photographed.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 The RC holes were sampled based on color and observations of lithology and presence spodumene. Samples were primarily taken at 3 ft (0.9 m) for pegmatite intervals and 5 ft (1.5 m) for the unmineralized host rock buffer. RC samples were collected using a riffle splitter, with the ½ splits captured in A and B 17x24" calico sample bags. All samples collected were dry. At the lab the RC samples were dried, crushed >70% passing -2mm, Jones Split 300g, Pulverize >85% passing -75 µm. Field duplicates were the B sample from the riffle splitter. The results of the duplicates were mostly within acceptable tolerance from the A sample. One sample was outside of the range of acceptability which was attributed to differences between sample A and B sample masses. As the programme was a reconnaissance exploration programme designed to better define the extent of the pegmatites and associated lithium mineralization it was not considered material to the interpretation of the results being reported.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels 	 Sample pulps were analysed at American Assay Labs (1506 Glendale Ave, Sparks, NV 89431, USA) using a sodium peroxide fusion with ICP-OES finish. Over limit values (> 10,000 ppm Li) were re-assayed using ICP analysis. Intervals of sulfide mineralisation were assayed using a 4-acid digest with ICP-OES finish. Ore Grade analyses were used for over-range elements No geophysical tools were used in the determination of assay results. Peroxide fusion results in the complete digestion of the sample into a

Criteria	JORC Code explanation	Commentary
	of accuracy (ie lack of bias) and precision have been established.	 molten flux. As fusion digestions are more aggressive than acid digestion methods, they are suitable for many refractory, difficult-to-dissolve minerals such as chromite, ilmenite, spinel, cassiterite and minerals of the tantalum-tungsten solid solution series. They also provide a more-complete digestion of some silicate mineral species and are considered to provide the most reliable determinations of lithium mineralisation. Sodium peroxide fusion is a total digest and considered the preferred method of assaying pegmatite samples. A standard industry accepted Quality Assurance and Quality Control ("QA/QC") program was employed to monitor the precision, accuracy and general reliability of the assay results from the drilling programme. The protocol included the insertion of field duplicates comprising the B sample, blanks and certified reference materials (CRMs) into the sample stream. In addition, American Assay Labs also incorporated its own internal QA/QC procedures to monitor its assay results prior to release to Chariot. CRMs, blanks and duplicates were inserted in every batch of 30 samples to assess the accuracy and reproducibility of the drill chip results. Standards were purchased from the CRM manufacturer OREAS. Standards were used to cover high grade, medium grade, and low grade, with a primary focus on lithium. Three OREAS standards were used covering a Li range from 0.24% Li to 0.72% Li, these were checked for laboratory accuracy. The blanks checked for evidence of laboratory contamination and duplicate assays on reviewed for potential sample bias effects. Variati

Criteria	JORC Code explanation	Commentary
Verification of sampling and assaying Location of	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. Accuracy and quality of surveys used to locate drill holes (collar and electron) 	 Drill data was compiled, collated and reviewed by ERM consultants. No independent reviews or check sampling or assays have been conducted. No previously drilled holes were twinned as the program is was for reconnaissance purposes. Drill hole data including meta data, lithological data, mineral data, and sampling data were collected during the RC drilling and recorded in Excel spreadsheets. No material data recording issues have been identified. Assay data has not been adjusted. Collar locations were recorded by handheld GPS and are suitable for
data points	 Accuracy and quality of surveys used to locate unit holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Conarrocations were recorded by nanoned GPS and are suitable for the reporting of exploration results (approximately 3 m horizontal and 5 m vertical). All coordinates were captured as UTM NAD 1983, Zone 13N. Elevations and topography were derived from DTM data collected during a previously flown high-resolution drone survey over the project area.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Drill hole collar spacing is variable, ranging from 15 m to 130 m in distance. The minimum distance between two drill hole collars is 3 m and these were drilled at different inclinations to target potential depth extensions of the same pegmatite. Sampling was reduced to 2 ft (0.6 m) at pegmatite margins, where possible to more accurately capture the margins. Sampling within the pegmatite intervals was at 3 ft (0.9 m) spacing and a buffer around the pegmatites up to 3 m was sampled at 5 ft (1.5 m) spacing. No mineral resource estimate has been calculated.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 Orientation of structures and pegmatite veins is not certain based on current information. Part of the aim of drilling program was to clarify these. No sampling biases related to orientation are expected.

Criteria	JORC Code explanation	Commentary
Sample security	• The measures taken to ensure sample security.	 The competent person has been advised that samples were under control of Chariot contractor staff from the drill site to delivery at the laboratory. Samples were transported in a locked enclosed pickup truck and stored within a locked garage whilst waiting for transport to the lab. Laboratory submission forms were completed for each batch of samples submitted to the laboratory.
Audits or reviews	• The results of any audits or reviews of sampling techniques and data.	 A review of sampling techniques was completed by Michael Cronwright of ERM during his site visit at the end of the program. The sampling procedures are considered acceptable for the current level of reconnaissance exploration being conducted. The results are not being used to support and Mineral Resource estimate. A number of recommendations were made to align with industry accepted practices have been made and will be implemented in future programs.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
<i>Mineral tenement and land tenure status</i>	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 Chariot currently holds a 93.9% interest in Wyoming Lithium Pty Ltd which holds a 100% interest in Panther Lithium Corporation ("PLC"). PLC holds 100% interest in the Black Mountain Project. There are no known impediments to the company tenure nor related issues which affect our ability to conduct exploration.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	• The Black Mountain pegmatite deposit is first described by Love (1942). A single spodumene-bearing dyke striking ENE with a dip of 30° to 60° to SSE. The dyke is described as 250 feet (75 m) in strike length and up to 10 feet (3 m) in thickness. The dyke in obscured by alluvium on its south-western end and is folded and irregular. The pegmatite contains spodumene with coarse K-feldspar, white quartz, mica and tourmaline (and rare apatite). At this time development consisted of two small prospecting pits.

Criteria	JORC Code explanation	Commentary
		 A number of other exploration pits thought to date back to this period have also been identified from satellite imagery but is possibly related to some undocumented exploration. A comprehensive description of pegmatite occurrences in Wyoming and Colorado was compiled by the USGS and is provided by Hanley et al. (1950). This study describes 114 pegmatite occurrences in these states with an emphasis on beryl bearing pegmatites as the main commodity of economic interest at that time. Other commodities considered in this study were beryllium, lithia (Li₂O), muscovite, columbium-tantalum, potash feldspar and rare earth pegmatites. Two types of lithium-bearing pegmatite are known in Colorado and Wyoming. In one variety, the lithia is predominantly in the mineral lepidolite, a lithium mica, and in the other it is in the minerals spodumene and amblygonite.
Geology	• Deposit type, geological setting and style of mineralisation.	 The Black Mountain is a typical LCT-type Pegmatite dike swarm with coarse grained spodumene-bearing pegmatite outcropping at surface in some of the pegmatites. The Pegmatite dikes are hosted within Archean Greenstones and are assumed to be associated with Late-Archean to Lower Proterozoic dated between 2.6 and 2.5 Ga. The LCT-type pegmatite dike swarm is located within the Granite Mountains of Central Wyoming, USA, comprising part of the Archean-Neoproterozoic supracrustal belt of North America.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly 	 Drillhole collars and assay data are summarized in Appendix 1 of this announcement.

Criteria	JORC Code explanation	Commentary
Data aggregation methods	 explain why this is the case. In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Intervals are reported as weighted averages based on interval lengths. No cut-off grades are applied to these exploration results. Lithium assays in ppm are converted to % Li₂O grades by multiplying by a factor of 2.153 and then dividing by 10,000 to get to % Li₂O. Tantalum assays in ppm are converted to Ta2O5 in ppm by multiplying by a factor of 1.2211. No equivalent values are used or reported.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 Majority of samples were taken at 0.6-1.5m lengths. The pegmatite dikes are shallowly dipping, the azimuth of the drill holes was oblique to the pegmatite strike and the inclination of the drill holes varied between 60° and 90°, typically intersecting the dikes at estimated angles between 50° and 80°. Down hole lengths are reported and most drilling intersections do not represent the true thickness. The estimated true widths range between 50% and 90% of the mineralised drill intervals reported in this announcement. The relationship between drilling orientation and mineralisation is considered appropriate and should not introduce any sampling bias.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	 Refer to the body of the announcement for the appropriate section and plan view maps.
Balanced reporting	• Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	 All exploration results applicable to the Black Mountain Project have been reported.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	No other exploration was conducted.

Criteria	JORC Code explanation	Commentary
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Chariot plans to evaluate the lithium mineralisation in the Southern Crest with additional drilling to be undertaken as practicable. As a secondary priority Chariot will look to complete the drill testing of the Northern Crest and Northwest Flank in view of the new understanding of the pegmatite orientations.

Section 3 (Estimation and Reporting of Mineral Resources) has been excluded as no Mineral Resources have been estimated for the Black Mountain Project to date.